This combination allows the deposition of layer stacks from ALD w

This combination allows the Lonafarnib deposition of layer stacks from ALD with low growth selleck kinase inhibitor rate and ICPECVD with high growth rate in the same chamber. Reactor walls as well as the substrates were heated to 80℃, and nitrogen (40 sccm) was applied as carrier and purge gas for trimethylaluminium (TMA) and benzene. The process pressure for the coating of AlO x and PP was 12 and 3 Pa, respectively. During the AlO x process, the oxygen flow was set to 150 sccm. One AlO x deposition cycle included the following steps: 10-s plasma pulse (400 W), 1-s purge time, 0.08-s TMA pulse time and 20-s purge time. The recipe for the PP worked as follows: 0.02-s benzene pulse time, instantly followed

by 4-s plasma pulse (200 W) and 6-s purge time. In order to improve the smoothness of PP films, a mass flow of 40 sccm argon was applied. PP-benzene as spacer layer was chosen simply because it allows a rapid film growth. Because of the high vapour pressure of benzene, neither active bubbling nor heating is necessary. One ML dyad is composed of 25-nm PEALD aluminium oxide, which is deposited at first, and 125-nm PECVD PP. x.5 dyads means that the ML is covered with 25-nm PEALD AlO x on top. The precursor containers Fludarabine datasheet for TMA and benzene were kept at room temperature. Calcium test After being coated with a multilayer, the polyethylene naphthalate (PEN) substrates were transported into an ultra-high vacuum cluster system with a base pressure of 5 × 10 −5 Pa and stored over night

to degas. Afterwards, silver electrodes (100 nm) were prepared by thermal evaporation at a deposition rate of 1.5 Å/s. Ca films with an initial thickness of 100 nm were thermally evaporated at 0.5 Å/s. The active area of the sensor between the

electrodes is 5 × 5 mm 2. The aperture of the sensor is given by the glass lid and its cavity (11 × 11 mm 2), which is mounted with an ultraviolet-cured epoxy resin (DELO-KATIOBOND Urocanase LP686, DELO Industrial Adhesives, Windach, Germany). A schematic of the test setup is shown in Figure 1. The measurement signal was detected by the Kelvin sensing method to eliminate the influence of wire and contact resistances. Therefore, a current of 0.5 mA was applied in order to record one reading per minute with a digital source meter (Keithley 2400, Keithley Instruments Inc., Cleveland, OH, USA) and a four-wire scanning card (Keithley 7067). The WVTR was calculated by means of the formula (4) Figure 1 Scheme top view of the electrical calcium test sensor. The factor 2 takes into account that water is the only species in our setup Ca reacts with [18]. k includes the fact that the Ca sensor overlaps the electrodes a little. These areas absorb humidity, but their corrosion does not affect the measured voltage. A is the area of the aperture, given by the glass lid, and l is the length as well as the width of the Ca sensor. M is the molar mass of calcium and water, and δ and ρ are the density and conductivity of calcium, respectively.

Comments are closed.