Livak KJ, Schmittgen TD: Analysis of relative gene expression

Livak KJ, Schmittgen TD: Analysis of relative gene expression buy VS-4718 data using real-time quantitative PCR and 2-ΔΔCt method. Methods 2001, 25:402–408.PubMedCrossRef 38. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248–254.PubMedCrossRef 39. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR: Site-directed mutagenesis by overlap extension using the polymerase

chain reaction. Gene 1989, 77:51–59.PubMedCrossRef 40. Bobrov AG, Kirillina O, Perry RD: The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 2005, 247:123–130.PubMedCrossRef 41. Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA: BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseodomonas aeruginosa PA14. J Bacteriol CA4P purchase 2007, 189:8165–8178.PubMedCrossRef Authors’ contributions The authors have no competing interests.

K.-C. Wang drafted the manuscript and performed mutant strain construction and PDE assay. Y.-H. Hsu helped the experimental design and data analysis. Y.-N. Huang assisted molecular cloning and site-directed mutagenesis, protein purification experiments. K.-S. Yeh conceived and coordinated this study and also helped to draft the manuscript. All authors read and approved the final manuscript.”
“Background Pneumonia is the most common cause of death related to infectious diseases. Even after aggressive antimicrobial treatment pneumococcal pneumonia causes mortalities of up to 10% [1]. Children

and young adults are susceptible to lower respiratory tract infection typically caused by Staphylococcus aureus Haemophilus influenzae and Pseudomonas aeruginosa[2]. Moreover, P. aeruginosa colonization of the lung is frequently found in cystic fibrosis patients, which worsens the prognosis of this disease [3]. Pneumonia signifcantly increases the average duration of intensive care unit (ICU) stays and mortality [4]. The diagnosis of nosocomial pneumonia often requires invasive and time consuming methods (e.g. bronchoscopy) [5]. Therefore, it is of utmost interest to develop a non-invasive method CYTH4 for the early diagnosis of this disease, preferably allowing the identification of the specific pathogens. Attempts on screening of volatile bacterial metabolites for detection and classification of virulent bacteria was already undertaken in the past. However, the vast majority of studies on volatile organic compounds (VOCs) released from bacteria included qualitative analyses only [6–10]. Also direct mass spectrometric methods were used for the investigation of VOC release, comprising selected ion flow tube mass spectrometry (SIFT-MS) [11, 12] and proton transfer reaction mass spectrometry (Selleckchem Idasanutlin PTR-MS) [13–15].

Comments are closed.