Results
A total of 29.9% of the patients in the group that received intensified blood-pressure control reached the primary end point, as assessed by means of a Kaplan-Meier analysis, as compared with 41.7% in the group that received conventional blood-pressure control (hazard ratio, 0.65; confidence interval, 0.44 to 0.94; P = 0.02). The two groups did not differ significantly with respect to the type or incidence of adverse events or the cumulative rates of withdrawal from the study (28.0% vs. 26.5%). Proteinuria gradually rebounded during ongoing ACE inhibition after an initial 50% decrease, despite persistently good blood-pressure control. Achievement of blood-pressure targets and a decrease in proteinuria
Selleck GDC0449 were significant independent predictors of delayed progression of renal disease.
Conclusions
Intensified blood-pressure control, with target 24-hour blood-pressure levels in the low range of normal, confers a substantial benefit with respect to renal function among children with chronic kidney disease. Reappearance of proteinuria after initial successful pharmacologic blood-pressure control is common among children who are receiving long-term ACE inhibition. (ClinicalTrials.gov
number, NCT00221845.)”
“The lack of a mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus CUDC-907 order (MARV), and has created a bottleneck in the development of antiviral therapeutics. Primary isolates of the filoviruses, i.e., ebolavirus (EBOV) and MARV, are not lethal to immunocompetent adult mice. Previously, pathological, virologic, and immunologic evaluation of a mouse-adapted EBOV, developed by sequential passages in suckling
mice, identified many similarities between this BAY 11-7082 cost model and EBOV infections in nonhuman primates. We recently demonstrated that serially passaging virus recovered from the liver homogenates of MARV-infected immunodeficient (SCID) mice was highly successful in reducing the time to death in these mice from 50 to 70 days to 7 to 10 days after challenge with the isolate MARV-Ci67, -Musoke, or -Ravn. In this study, we extended our findings to show that further sequential passages of MARV-Ravn in immunocompetent mice caused the MARV to kill BALB/c mice. Serial sampling studies to characterize the pathology of mouse-adapted MARV-Ravn revealed that this model is similar to the guinea pig and nonhuman primate MHF models. Infection of BALB/c mice with mouse-adapted MARV-Ravn caused uncontrolled viremia and high viral titers in the liver, spleen, lymph node, and other organs; profound lymphopenia; destruction of lymphocytes within the spleen and lymph nodes; and marked liver damage and thrombocytopenia. Sequencing the mouse-adapted MARV-Ravn strain revealed differences in 16 predicted amino acids from the progenitor virus, although the exact changes required for adaptation are unclear at this time.