Cell walls impose a significant resistance Assuming an effective

Cell walls impose a significant resistance. Assuming an effective porosity of the cell wall

of 0.1 or 0.05, then cell walls could account for 25% or 50% of the total mesophyll resistance, respectively. Since the fraction of apoplastic water that is unbound and available for unhindered CO2 diffusion is unknown, it is possible CBL0137 that the effective porosity is < 0.05. Effective porosity could also vary in response to changes in pH or cation concentration. Consequently, cell walls could account for > 50% of the total resistance and a variable proportion. Most of the remaining resistance is imposed by one or more of the three membranes as mesophyll resistance can be altered by varying the expression of cooporins. The CO2 permeability of vesicles prepared from chloroplast envelopes has been reduced by RNA interference (RNAi) expression of NtAQP1, but not those prepared from the plasma membrane. Carbonic anhydrase activity also influences mesophyll resistance. Mesophyll resistance is relatively insensitive to the manipulation of any step in the pathway because it represents only part of the total and may also be countered by pleiotropic

compensatory changes. The parameters in greatest need of check details additional measurements are S-c, mesophyll cell wall thickness, and the permeabilities of the plasma membrane and chloroplast envelope.”
“BACKGROUND: Intracellular Ca(2+) handling is abnormal in human heart failure. Studies have demonstrated that left ventricular assist device (LVAD) support reverses phenotypic alterations, suggesting that, in select patients, LVAD support may be a bridge to recovery. Few studies have related support duration to phenotypic recovery. We hypothesized that reversal of impaired sarcoendoplasmic reticulum (SR) Ca(2+) cycling following LVAD implantation is duration-dependent.

METHODS: We used post-rest potentiation to assess SR function, and Western

blot analysis to measure Ca(2+)-cycling Luminespib proteins. Left ventricular tissue from 10 non-failing hearts, 8 failing hearts and 10 LVAD-supported hearts was analyzed. Support ranged from 7 to 334 days. The median duration, 115 days, divided patients into short- and long-term support groups.

RESULTS: Post-rest potentiation (PRP) response recovered after short-term LVAD support to a level (116.8 +/- 12.1%; n = 5) close to non-failing (123.4 +/- 12.0%; n = 10) hearts, but recovery after long-term support (23.5 +/- 7.0%; n = 5) remained closer to that of failing hearts (13.5 +/- 5.6%). We found a similar pattern of normalization for SR Ca(2+)-ATPase protein and the phospholamban/SR Ca(2+)-ATPase ratio (non-failing: 0.66 +/- 0.11; failing: 1.21 +/- 0.23; short-duration LVAD: 0.68 +/- 0.14; long-duration LVAD: 1.67 +/- 0.30; correlation p < 0.001; r = 0.93). The ratio also tended to correlate with the PRP response after unloading (p = 0.05; r = -0.65).

Comments are closed.