ISME J 2011, 5:639–649.PubMedCentralPubMedCrossRef 40. Zhang HH, Chen L: Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol Biol Rep 2010, 37:4013–4022.PubMedCrossRef 41. Schwab C, Cristescu B, Boyce MS, Stenhouse GB, Ganzle M: Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears. Can J Microbiol 2009, {Selleck Anti-cancer Compound Library|Selleck Anticancer Compound Library|Selleck Anti-cancer Compound Library|Selleck Anticancer Compound Library|Selleckchem Anti-cancer Compound Library|Selleckchem Anticancer Compound Library|Selleckchem Anti-cancer Compound Library|Selleckchem Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|buy Anti-cancer Compound Library|Anti-cancer Compound Library ic50|Anti-cancer Compound Library price|Anti-cancer Compound Library cost|Anti-cancer Compound Library solubility dmso|Anti-cancer Compound Library purchase|Anti-cancer Compound Library manufacturer|Anti-cancer Compound Library research buy|Anti-cancer Compound Library order|Anti-cancer Compound Library mouse|Anti-cancer Compound Library chemical structure|Anti-cancer Compound Library mw|Anti-cancer Compound Library molecular weight|Anti-cancer Compound Library datasheet|Anti-cancer Compound Library supplier|Anti-cancer Compound Library in vitro|Anti-cancer Compound Library cell line|Anti-cancer Compound Library concentration|Anti-cancer Compound Library nmr|Anti-cancer Compound Library in vivo|Anti-cancer Compound Library clinical trial|Anti-cancer Compound Library cell assay|Anti-cancer Compound Library screening|Anti-cancer Compound Library high throughput|buy Anticancer Compound Library|Anticancer Compound Library ic50|Anticancer Compound Library price|Anticancer Compound Library cost|Anticancer Compound Library solubility dmso|Anticancer Compound Library purchase|Anticancer Compound Library manufacturer|Anticancer Compound Library research buy|Anticancer Compound Library order|Anticancer Compound Library chemical structure|Anticancer Compound Library datasheet|Anticancer Compound Library supplier|Anticancer Compound Library in vitro|Anticancer Compound Library cell line|Anticancer Compound Library concentration|Anticancer Compound Library clinical trial|Anticancer Compound Library cell assay|Anticancer Compound Library screening|Anticancer Compound Library high throughput|Anti-cancer Compound high throughput screening| 55:1335–1346.PubMedCrossRef 42. Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS: Massive parallel 16S rRNA gene pyrosequencing reveals
highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol Ecol 2011, 76:301–310.PubMedCrossRef 43. Ritchie LE, Burke KF, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS: Characterization of fecal microbiota in cats
using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Vet Microbiol 2010, 144:140–146.PubMedCrossRef 44. Tun HM, Brar MS, Khin N, Jun L, Hui RKH, Dowd SE, Leung FCC: Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. J Microbiol Methods 2012, 88:369–376.PubMedCrossRef 45. Schwab C, Gänzle Torin 2 M: Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears. Can J Microbiol 2011, 57:177–185.PubMedCrossRef 46. Zoran DL: The carnivore connection to nutrition in cats. J Am Vet Med Assoc 2002, 221:1559–1567.PubMedCrossRef 47. Wei G, Lu H, Zhou Z, Xie H, Wang A, Nelson K, Zhao L: The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clone library analysis. Microb Ecol 2007, 54:194–202.PubMedCrossRef 48. Suchodolski JS, Camacho J, Steiner JM: Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Rebamipide Microbiol Ecol 2008, 66:567–578.PubMedCrossRef 49. Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Gänzle M: Diet and environment shape fecal bacterial microbiota composition and enteric
pathogen load of grizzly bears. PLoS One 2011, 6:e27905.PubMedCentralPubMedCrossRef 50. Ritchie LE, Steiner JM, Suchodolski JS: Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol Ecol 2008, 66:590–598.PubMedCrossRef 51. Hayashi H, Sakamoto M, Kitahara M, Benno Y: Diversity of the Clostridium coccoides group in human fecal microbiota as determined by 16S rRNA gene library. FEMS Microbiol Lett 2006, 257:202–207.PubMedCrossRef 52. Hoskins LC: Mucin degradation in the human gastrointestinal tract and its significance to enteric microbial ecology. Eur J Gastroenterol Hepatol 1992, 5:205–213.CrossRef 53. Liu C, Finegold SM, Song Y, Lawson P: Reclassification of Clostridium coccoides, learn more Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov.